Brain activity and connectivity differences in reward value discrimination during effort computation in schizophrenia

Abstract

Negative symptoms in the motivational domain are strongly correlated with deficits in social and occupational functioning in schizophrenia. However, the neural substrates underlying these symptoms remain largely unknown. Twenty-eight adults with schizophrenia and twenty healthy volunteers underwent functional magnetic resonance while completing a lottery game designed to capture reward-related cognitive processes. Each trial demanded an initial investment of effort in form of key presses to increase the odds of winning. Brain activity in response to different reward cues (1 euro versus 1 cent) was compared between groups. Whereas controls invested more effort in improving their chances to win 1 euro compared to 1 cent in the lottery game, patients invested similarly high amounts of effort in both reward conditions. The neuroimaging analysis revealed lower neural activity in the bilateral caudate and cingulo-opercular circuits and decreased effective connectivity between reward-associated areas and neural nodes in the frontoparietal and salience network in response to high- versus low-reward conditions in schizophrenia patients compared to controls. Effective connectivity differences across conditions were associated with amotivation symptoms in patients. Overall, our data provide the evidence of alterations in neural activity in the caudate and cingulo-opercular “task maintenance” circuits and frontoparietal effective connectivity with reward-associated nodes as possible underlying mechanisms of reward value discrimination deficits affecting effort computation in schizophrenia.

Publication
European Archives of Psychiatry and Clinical Neuroscience

Related